翻訳と辞書 |
Inversive distance : ウィキペディア英語版 | Inversive distance In inversive geometry, the inversive distance is a way of measuring the "distance" between two circles, regardless of whether the circles cross each other, are tangent to each other, or are disjoint from each other.〔 ==Properties== The inversive distance remains unchanged if the circles are inverted, or transformed by a Möbius transformation.〔〔〔 One pair of circles can be transformed to another pair by a Möbius transformation if and only if both pairs have the same inversive distance.〔 An analogue of the Beckman–Quarles theorem holds true for the inversive distance: if a bijection of the set of circles in the inversive plane preserves the inversive distance between pairs of circles at some chosen fixed distance , then it must be a Möbius transformation that preserves all inversive distances.〔.〕
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Inversive distance」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|